skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sakai, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the design of a pair spectrometer for use at FACET-II, where there is a need for spectroscopy of photons having energies up to 10 GeV. Incoming gammas are converted to high-energy positron-electron pairs, which are then subsequently analyzed in a dipole magnet. These charged particles are then recorded in arrays of acrylic Cherenkov counters, which are significantly less sensitive to background x-rays than scintillator counters in this case. To reconstruct energies of single high-energy photons, the spectrometer has a sensitivity to single positron-electron pairs. Even in this single-photon limit, there is always some low-energy continuum present, so spectral deconvolution is not trivial, for which we demonstrate a maximum likelihood reconstruction. Finally, end-to-end simulations of experimental scenarios, together with anticipated backgrounds, are presented. 
    more » « less
  2. We present a measurement of the branching fraction and fraction of longitudinal polarization of B 0 ρ + ρ decays, which have two π 0 ’s in the final state. We also measure time-dependent C P violation parameters for decays into longitudinally polarized ρ + ρ pairs. This analysis is based on a data sample containing ( 387 ± 6 ) × 10 6 ϒ ( 4 S ) mesons collected with the Belle II detector at the SuperKEKB asymmetric-energy e + e collider in 2019–2022. We obtain B ( B 0 ρ + ρ ) = ( 2.8 9 0.22 + 0.23 0.27 + 0.29 ) × 10 5 , f L = 0.92 1 0.025 + 0.024 0.015 + 0.017 , S = 0.26 ± 0.19 ± 0.08 , and C = 0.02 ± 0.1 2 0.05 + 0.06 , where the first uncertainties are statistical and the second are systematic. We use these results to perform an isospin analysis to constrain the Cabibbo-Kobayashi-Maskawa angle ϕ 2 and obtain two solutions; the result consistent with other Standard Model constraints is ϕ 2 = ( 92.6 4.7 + 4.5 ) ° . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. We use a combined data set from the Belle and Belle II experiments, which studye+ecollisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D + K S 0 K π + π + decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. A<sc>bstract</sc> We report the first measurement of the inclusivee+e→$$ b\overline{b} $$ b b ¯ →$$ {D}_s^{\pm } $$ D s ± Xande+e→$$ b\overline{b} $$ b b ¯ → D0/$$ {\overline{D}}^0 $$ D ¯ 0 Xcross sections in the energy range from 10.63 to 11.02 GeV. Based on these results, we determineσ(e+e→$$ {B}_s^0{\overline{B}}_s^0 $$ B s 0 B ¯ s 0 X) andσ(e+e→$$ B\overline{B} $$ B B ¯ X) in the same energy range. We measure the fraction of$$ {B}_s^0 $$ B s 0 events at Υ(10860) to befs= ($$ {22.0}_{-2.1}^{+2.0} $$ 22.0 2.1 + 2.0 )%. We determine also the ratio of the$$ {B}_s^0 $$ B s 0 inclusive branching fractions$$ \mathcal{B} $$ B ($$ {B}_s^0 $$ B s 0 → D0/$$ {\overline{D}}^0 $$ D ¯ 0 X)/$$ \mathcal{B} $$ B ($$ {B}_s^0 $$ B s 0 →$$ {D}_s^{\pm } $$ D s ± X) = 0.416 ± 0.018 ± 0.092. The results are obtained using the data collected with the Belle detector at the KEKB asymmetric-energye+ecollider. 
    more » « less
  5. We measure the tau-to-light-lepton ratio of inclusive B -meson branching fractions R ( X τ / ) B ( B X τ ν ) / B ( B X ν ) , where indicates an electron or muon, and thereby test the universality of charged-current weak interactions. We select events that have one fully reconstructed B meson and a charged lepton candidate from 189 fb 1 of electron-positron collision data collected with the Belle II detector. We find R ( X τ / ) = 0.228 ± 0.016 ( stat ) ± 0.036 ( syst ) , in agreement with standard-model expectations. This is the first direct measurement of R ( X τ / ) . Published by the American Physical Society2024 
    more » « less
  6. We search for the rare decay B + K + ν ν ¯ in a 362 fb 1 sample of electron-positron collisions at the ϒ ( 4 S ) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in ϒ ( 4 S ) B B ¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B + K + ν ν ¯ branching fraction of [ 2.7 ± 0.5 ( stat ) ± 0.5 ( syst ) ] × 10 5 and [ 1.1 0.8 + 0.9 ( stat ) 0.5 + 0.8 ( syst ) ] × 10 5 , respectively. Combining the results, we determine the branching fraction of the decay B + K + ν ν ¯ to be [ 2.3 ± 0.5 ( stat ) 0.4 + 0.5 ( syst ) ] × 10 5 , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024 
    more » « less